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DIFFERENTIAL CROSS SECTION AND RELATED INTEGRALS
FOR THE MOLIERE POTENTIAL

IN TR ODUCTION
At the core of all radiation-damage and ion-range calculations for heavy-ion beams

incident on bulk materials is the choice of potential that represents the interaction between th~incoming ions and the lattice atoms. These potentials range from ones specifically tailored to an
atom-ion pair to less accurate forms that can be used, with simply defined parameters, for any
interacting pair (Ii. Most of the forms in this latter category consist of some approximation to
th e Firsov form of the two-body Thomas-Ferm i interaction.

The Thomas-Fermi potential, for an isolated atom of charge Z2e, is usually written

V(r) — -

where ~ 1(x) is the screening factor for the Coulomb potential and where the screening radius

a — 2 1*12,3 — 0.8853 a0Zf

The function X T(X) is available in tabular form flal . Firsov was able to justify the adaptation
of the Thomas-Fermi potential as a two-body interaction ; specifically, if the quantities Z 1 and
Z2 are the atomic numbers of the incoming ion and lattice atom respectively, we write

V(r)  
_ Z 1Z 2e

where we adopt the screening radius of Lindhard , Nielsen, and Scharif (LNS) (2) given by
a — 0.8853 a0Z~~

3,

z — + z?’3)312.
In addition to the Thomas-Fermi screening function being available in tabular form , it has

been approximated by a large variety of analytical forms. Of these forms, we are particularly
interested in the Moliere form fib) , given by

XM(x) — 0.35 e 0-3 ’
~+ 0.55 e~~~’+ 0.10 e .’~

where x — n a .  The MoliCre screening factor falls off exponentially with large separations,
whereas the Thomas-Fermi screening factor falls off as x~

3. It has been shown however that
th e Thomas-Fermi interaction falls off too slowly and that the Moliere potential is a more real-
istic interaction for large separations Ilb ,31. The Moliere interaction Is, for example, used by

Manusezipt submitted Januasy 27, 1978.
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G. P. MUELLER

Robinson and Torrens in their computer simulation studies of radiation damage (41. in Fig. I
we show the ratio of the MoliBre and Thomas-Fermi screening factors as a function of sepéra-
tion. The agreement is quite good out to the region where the exponential decay of the
MoliCre screening factor is dominant. In this region, as we said, the MoliCre interaction is
more realistic.

I I ‘. 1 I 1 1

~~~~~~~- xjs)

REDUCED SEPARATION x

Fig. I — Ratio of Moliere and Thomas-Fermi screening
factors as a function of dimensionless separation

Although computer simulation calculations use an interaction directly, Boltzmann (SI and
Lindhard 12,61 transport calculations use the scattering cross section associated with the poten-
tial. With the definitions

p — impact parameter ,
E — incident ion energy ,

and

A I +A , 
E —  center of mass energy ,

where A and 2 are the masses in atomic units of the incoming ion and lattice atom respec-
tively, the scattering angle is (7)

mu
dr9 — i r — 2 p j  2 2 112 ’ (1)

~mIn 
r (1 — V(r) / E 1 — p / r Z)

where r mln is the largest zero of the radical in the integrand. We also make use of another vari-
able, the energy transferred in a collision,

T Tm sin 2 8/2 .
where

4 A 1A 27’,,, — yE —
(A~ + 4 2)2

is the maximum kinetically allowed energy transfer. Corresponding to this maximum energy
transfer is the minimum energy that can be carried away by the incident ion, given by

2 

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2
Emin 

mu E/ 13 mu E.
4 1 + 4 2

Much of the work of Lindhard and his coworkers is couched in terms of the dimensionless vari-
ables

E = E / E L,
Z 1Z2e2 4 1 + 4 2EL — -  

a
and

t — €~ T/T,,, — 52 sin 2 8/2.

In terms of these various definitions, the differential cross section is

dir mu — 2irp dp mu — 2i rp ( t)  dp(t) dt.

LNS use the notation

dcr — i (t~~2)aft.

so that

i (e”~J — 4. t 312p(t) (2)

Out of a desire to create a simple, universal cross section, LNS now make two approxima-
tions to obtain f  (t I~ ): they replace Eq. (1) by the momentum approximation [81 to the
scattering angle, so that

9 mu — pIE 1 f dr J~. 
dV(n) (I p 2/ n 2Y

~’~
2, (3)

and they make the substitution

— a 2 sin 2 9/2.

By combining these approximations, we find that we can write

~I/2 mu — 4 (p /a) f ~fr x~ ~i — 
(p/~~~2 I_ hi

~
2 

d 

~~ 
x(x)1. (4)

Equation (4) provides a functional relationship between the impact parameter and the reduced
energy transfer that can be used to solve Eq. (2) for f(t ’~2). The advantage of the LNS
method is that the differential cross section depends on only one variable; in other words, the
variable t in  Eq. (4) would ordinarily depend on both p/a and e, but in the LNS approximation
it depends only on p /a.

Before we continue , one other point should be made. With any infinite range potential,
the total cross section diverges as the energy transfer approaches zero. To bypass this difficulty,

3

_ _ _  
_ _  
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G. P. MUELLER

we cut off the allowed energy transfer at a minimum value T1. The cutoff value will be of the
order of 20 eV, dependent on the target material , and can be thought of as related to the
minimum energy required to displace an atom from its lattice site. Collisions in which an
energy of less than T1 would be transferred to a lattice atom are not allowed. Roughly the same
approach is tak en in computer simulation calculations , where there is a maximum allowed
impact parameter.

Given these considerations , the totaL (macroscopic) cross section is

Na (E)  — N f do — N 71a 2 5 ~~ n 2

where N is the number density of lattice atoms and
£ 1’~ 

1/2

2yEL

Following LNS, we can write

N S(E) mu Nir a 2 ~~~ 2 f d,~ f (, 1)

for the stopping cross section for elastic collisions and

N W( E) — Nwa 2 1z~i 5 d ’q ~J2 f (q)

for the square fluctuation in energy loss. The quantities f ,  S. and W are provided by LNS in
tab ular form (2). Mannin g has generated a more complete table [91. Wi nterbon , Sigmund , and
Sanders (WSS) (61 have created a more convenient fit to the LNS f(’q) in the form

fw(q) k’r~~
3 (1 + (2k1) 4h13)2h’3J , X 1.309 .

Relatively convenient expressions can be found for o (E) ,  S(E) , and W(E) (10,111.
it is our intention in the rest of this report to find the f(i~) corresponding to the Moliere

potential and to develop convenient forms for f ,  o, S. and W.

EXACT RESULTS
The integral that arises in Eq. (3) with the MoliCre potential is evaluated by Lehmann and

Leibfried (8), with the result
3

9 m u~~~
1 

~~ b,A ,K 1(k ,p/ a) ,
‘—I

where K 1 is the modified Bessel function ,
A , — 0.3, 1.2. 6. i — 1. 2. 3.

and
b, — 0.35, 0.55, 0.10. 1 — 1, 2 

3.4
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Consequently we have

1I/2 4 ~ b1A 1K 1(A ,p/ a) .  (5)

In terms of the variable i~, Eq. (2) becomes

fM(”l) mu 2 112p/ a , (6)

and we find

— — 4 E b,X~ 
K iOt,p/ a) 

+ Ko(A 1P/a)J.

By using Eqs. (5), (6), and (7), we can form a table expressing the relationships between
f(r 1) , i~ and p/a.

For convenience let us make the definitions

NCT M(E) mu Nira 2 
1€M(1)G) — 

~~M(€)J. (8)

~~M(X) — f d,1 ‘~I
2 fM(”1),

N SM( E) mu N ir a 2 ~~~~ 
— 

~
M(’1o)l.

SM(x) f  dirp fu ( ’) ,

N WM (E) mu N ir ~ 2 (~2j 2 
~ 

~~~~~~~~~~~ 
—

. 

@M(?)0)I , (10)

and

@M(X) — f dip ~~ IM(ip).

The first function is trivial to evaluate , so that
— ~p(vp)/aJ 2.

The second quantity is

mu 4 dq q 

~~ 
b1A .K l (X~~) J .

p x)/a

This integral can be evaluated exactly (12), yielding

mu + ~ 
b,2 s,2 

[
KJ (s~) + -

~~
- K0(s~)K ,(s,) — K?(se)I

— 4 j A ,A 1b1b~ [ s j K o(sj ) K 1(s1) — s,Ko(ss)K i(s,)J.
101

where 
~l.J mu A~J p/a. The quantity (~~(x) app arently cannot be evaluated in closed form .

S 
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* G. P. MUELLER

Figure 1 indicates the deviations of the Moliere potential from the Thomas-Fermi poten-
tial. Specifically we note the series of wiggles in the ratio. These are no doubt due to the
fitti ng of the MoliCre form to the Thomas-Fermi potential; they have no physical significance.
In Fig. 2 we reproduce that curve , with the addition of a plot of the ratio of the Molibre and
Thomas-Fermi cross sections, drawn as a function of p/a. We see that the wiggles in the
Moliere potential , relative to the Thomas-Fermi potential , are reproduced , and indeed

• magnified , in the corresponding cross sections. In part this magnification is probably due to the
use of the momentum approximation to calculate the scattering angle. Figure 3 provides plots
of the Moli~re and Thomas-Fermi f(ip) functions ; also shown is the WSS fit to the Thomas-
Fermi f(ip) function.

I I I I

ice -

1, 1.06 - -
z

I..

~~lO4 -

‘ “ Fig. 2 — Ratio of the MoliCre and Thomas-Fermi
z 

— 
/ screening functions as a function of rio, and ratio of

00 ~~~~~~~~~~~~~~~~ 
_____ 
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0.2 03 0.5 01 I 2 3 5 7
r/o AND pie

SIMPLE FIT FOR fM(’))
It is time consuming to evaluate the exact expression (Eqs. (5), (6) , and (7)) for fu(’p);

in actual use it is convenient to have some simple form to represent the cross section. We
have found that

f(ip) — f1 (vp) mu a0ipln ip + ~~~ + ~~2ip2 + a3ip 3,q  < q 0.06,

$2 + $35) + 1)
fits the exact fM(’p) to better than 6% for all values of ip. The values of the parameters in these
equations are

a , —20.45, —71, 422.097 , —1429.70, I mu 0. 1, 2. 3,

- I  

_ _ _ _  
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Fig. 3 — Comparison of the MoIi~re , Thomas-Fermi ,
and WSS scattering functions

and
— 0.007. 0.0387 . 0.826) . I — 1. 2. 3.

In particular , 02 and 03 were chosen so that the fits in the two regions had equal values and
derivatives at ip mu

The various integrals of f (n) ,  Eqs. (8), (9), and (10) , can be evaluated in closed form .
For ip < i p w e  have

mu 148.298 — (4 00 In 2 vp + 01 In ip + 027? + 4 a3~ 2j .

mu 4 a~ip 2 (In 11 — 4J + 4 a 51p2+ 4 0~7?~ + 
~~ 

0317
g
.

and 

@~(7?) + 7?400(ln ~ — + + ~~~~~ 
~~ 

0~7?~ + ~~ 031)6,

and for vp > vp we have

e2(1)) — 2$~($~ — 2$2)JP2(v,) + 4P 1$2/n

+ ($2 — 2$I $3) IP j (
~

) — 2 In

— 0.059298 + + ( 4$ i — $3) P2(ip) + 
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and 

@ 2(1)) — 0.079916 + 
~ fr+ (4p ~ — 2$~ ip + ($1 — $2 — 2$1$~~P1(7?)

+ [(2$i~~~ — 2$2) — $3($1 — 3$2)J1’2(7?)!.

where we write
Po — ($1~~~4$2 ) hh ’2,

• P 1 (vp) mu In ($2~~ 5)$3 + ,~),
and

P2(ip) mu In [($3 + 27? — P0)/($3 + 2 1)4 P OI) J .  -

i .06 I I 1 1

Fig. 4 — Comparison of present work ~~th
exact Moliere results: ratio of scattering ker-

~~~io~ io~ 102 

- nels as a function of reduced energy transfer

REDUCED ENERGY TRANSFER, ~ ~

Figure 4 pres~P1s a comparison of our fit (fi and 12) with the exact expression f , 4ip) .
We see that the error in f(lrp) is neve’ more than 6%. Consequently the errors in e, 8, and (

~will be less than 6%. Because we are now prescribing an f ( ip ) ,  we are interested in what
• screening factor corresponds to this new f(’p). Within the spiri t of the LNS approximations,

embodied in Eq. (4) , we can write (Ic , 13, 14)

4 -1/2
,~(x ) _ _

,~~f dq (q 2 _ x 2) ,p(q)

4x f ”  dq(ip) 1 2 21 1 /2
- j  dip vp 

~“1)

where x and i~, are related by
mu f  dip ~ _2

f(~ )

In Fig. S we compare as a function of x the ~(x) obtained in this manner from our new f(vp)
with the exact form xM(x) . We see that ~(x) differs from ~M(x ) by less than 6%. We also
show the error in f ( ip )  agai n, this time as a function of q —

8
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0.94
10-2 0-I 0 102

x r r / c,  AND q~ pCi~)/a

Fig. S — Comparison of present work with exact Moliere results:
ratios of scattering kernals and screening functions

CONCL USIONS
We have created a simple differe ntial cross section that reproduces the cross section

derived from the Moliere potential by the LNS method. The expressions for this f(~) and the
related integrals for total cross section , stopping power , and fluctuation in energy loss involve

- only simple powers and logarithms. We suggest the use of this version of the Moliere cross
section as a universal cross section , to replace the LNS and WSS forms.
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